

Welcome to Nynas

Carl Robertus

European bitumen demand

Source : Nynas estimates based on various sources.

Number

Capacity, kb/d

Bitumen grades in Europe

Polymer Modified EN 14023

> Industrial EN 13304

Paving Grades EN 12591 + EN 13924-1

FORMAL DEMANDS

Construction Products Regulation (EU) No 305/2011

- Establishes 'Basic Requirements
 - Mechanical resistance and stability
 - Safety in case of fire
 - Hygiene, health and the environment
 - Safety and accessibility in use
 - Protection against noise
 - Energy economy and heat retention
 - Sustainable use of natural resources
- Must be incorporated into bitumen standards

Bitumen Quality ...?

Characteristics	Unit	Test method	Class 0 ^a	20/30	30/45	35/50	40/60	50/7
Penetration at 25°C	0,1 mm	EN 1426	1	20 – 30	30 – 45	35 – 50	40 - 60	50 – 1
Softening point	°C	EN 1427	1	55 – 63	52 – 60	50 – 58	48 – 56	46 – {
Resistance to hardening at 163°C		EN 12607-1	1					
Retained penetration	%		1	≥ 55	≥ 53	≥ 53	≥ 50	≥ 50
Increase in softening point, max - Severity 1	°C			≤8	≤ 8	≤ 8	≤9	≤ 9
or			1	or	or	or	or	or
Increase in softening point, max - Severity 2 ^b	°C			≤ 10	≤ 11	≤ 11	≤ 11	≤ 11
Flash point ^b	°C	EN ISO 2592	/	≥240	≥ 240	≥ 240	≥ 230	≥23
Solubility ^b	%	EN 12592	1	≥ 99	≥ 99	≥ 99	≥ 99	≥ 99
Change of mass after RTFOT ^b	%	EN 12607-1	/	≤0,5	≤0,5	≤ 0,5	≤ 0,5	≤ 0,5

Table 1 — Paving grade bitumen specifications for grades from 20 x 0.1mm to 220 x 0.1mm penetr

Bitumen specification timeline from empirical to more fundamental performance

Ageing induced cracking

Observations:

- Block cracking can occur on aged pavements without reaching BBR T_{critical}
- Materials rank differently for block vs. transverse cracking

Two binder parameters have been introduced in 2011*

- ΔTc from Bending Beam Rheometer
- **Glover Rowe** from Dynamic Shear Rheometer (G^* , δ at T=15°C and ω =0.005 s⁻¹)

* Anderson, King, Hanson, Blankenship, *Evaluation of the Relationship between Asphalt Binder Properties and Non-Load Related Cracking*, AAPT 2011, p615

Gerald Reinke, Andrew Hanz, R. Michael Anderson, Mary Ryan, Steven Engber, Douglas Herlitzka, *Impact of re-refined engine oil bottoms on binder properties and mix performance on two pavements in Minnesota* E&E Congress 2016

Bending Beam Rheometer EN 14771

	Α	В	С	D	E
Penetration	42	64	52	52	67
Softening Point	51.3	47.7	49.8	49.0	46.8
PI	-1.3	-1.2	-1.2	-1.4	-1.4
Fraass Breaking Point	-15	-14	-17	-14	-17
EN Grade	40/60	50/70	50/70	50/70	50/70

On RTFOT-PAV aged sample a constant load is applied, the deformation is followed with time. 300M

- Stiffness 'S' and slope of the creep curve 'm' (after 60s)
- To prevent fracture; a low stiffness and/or a large mvalue are preferred
- More recently ΔT_c is measured

Laboratory ageing of bitumen

Short Term Ageing

+

PAV (1 cycle = 20 hours)

20 bar 85 - 110 °C

Effect of Ageing on: ΔT_c (BBR): LST - LmT

Short and Long Term Ageing

Short and Long Term Ageing

Short and Long Term Ageing

Glover-Rowe Plot in Black Space: DSR on Aged Binders (15° C; 0.005 rad/s)

Rowe: Prepared Discussion to M. Anderson paper - AAPT 2011

Glover-Rowe Plot in Black Space: DSR on Aged Binders (15° C; 0.005 rad/s)

Rowe: Prepared Discussion to M. Anderson paper - AAPT 2011

Conclusions

20

- Bitumen "travels further" today than it used to, giving more diversity in source and supply chain operations
- Specifications must reflect performance including the long term durability
- \triangleright Wide variations observed in ΔT_c of bitumen available Europe
- Long term performance expected to be very different
- Further work recommended to validate ΔT_c (and G-R) concept
- Selection of bitumen all the more important

Not just black but many shades of black and grey

Conclusions

- Bitumen "travels further" today than it used to, giving more diversity in source and supply chain operations
- Specifications must reflect performance including the long term durability
- \triangleright Wide variations observed in ΔT_c of bitumen available Europe
- Long term performance expected to be very different
- Further work recommended to validate ΔT_c (and G-R) concept
- Selection of bitumen all the more important

Not just black but many shades of black

TAKING OIL FURTHER

We take oil further to bring lasting value to customers and the world we live in.

