Frost in open-graded materials

Karlis Rieksts PhD

Introduction and background

Large scale experimental setup and results

Field test site description and temperature distribution analysis

C.

Numerical model of field test site

□ The use of crushed rock materials;

□ Frost heave on newly built roads/railways;

□ Requirements for frost protection layers;

□ Other coarse construction materials.

Open-graded materials in road construction

Conduction;
Free convection;
Radiation.

Theory on natural air convection

$\frac{\text{Downward heat flow}}{\mathbf{q}}\downarrow$

conduction
 radiation
 effective thermal conductivity

➤ radiation

Theory on natural air convection

Nu Nusselt

Nusselt number

Nu =
$$\frac{q\uparrow}{q\downarrow}$$

q^{\uparrow} - upward heat flow q^{\downarrow} - downward heat flow

$$Ra = \frac{g \beta C K H^2 \nabla T}{v k_e}$$

- g gravitational acceleration
- β thermal expansion
- C heat capacity
- v kinematic viscosity
- K intrinsic permeability
- H height
- VT temperature gradient
- k_e effective thermal conductivity

Test-site simple analysis

Test-site modelling

Theory on natural air convection

Nu = 1.735 ln(Ra) - 5.38 $\int \frac{q \uparrow}{q \downarrow} = 1.735 ln\left(\frac{g\beta C \mathbf{K} H^2 \nabla T}{\nu k_e}\right) - 5.38$

Critical Rayleigh number:

$$Ra_c = \sim 40$$

Large-scale experiments

Test-site simple analysis

Experimental procedure

Large-scale experiments

Test-site simple analysis

Validation for convective heat transfer with cobbles

Convection in road construction materials

Constructed during fall of 2016

Road sections

Railway sections

Large-scale experiments

Test-site simple analysis

Test-site modelling

 $FI_a = 25368 \,^{\circ}C \cdot h$ (1057 $^{\circ}C \cdot days$) $FI_a = 36864 \,^{\circ}C \cdot h$ (1536 $^{\circ}C \cdot days$) $FI_s = 23160 \,^{\circ}C \cdot h$ (965 $^{\circ}C \cdot days$) $FI_s = 36744 \,^{\circ}C \cdot h$ (1531 $^{\circ}C \cdot days$)

Period of analysis: October 2, 2017 to April 19, 2018 - 200 days

Test-site simple analysis

Test-site modelling

Convection in road structural layers

Subbase 20/120 mm

 $\nabla T_{crit} = 6.0 \,^{\circ}C/m$

35% of time higher than 6.0 °C/m

Frost protection 40/120 mm

 $\nabla T_{crit} = 4.5 \circ C/m$

32% of time higher than 4.5 °C/m

Subbase 20/120 mm

 $\nabla T_{crit} = 6.0 \,^{\circ}C/m$

49% of time higher than 6.0 °C/m

Foam glass 40/120 mm $\nabla T_{crit} = 6.5 \circ C/m$

chi ,

88% of time higher than 6.5 °C/m

Test-site simple analysis

Test-site modelling

	8
	7.5
	7
-0	6.5
	6
	5.5
	5

Road section Ro6

Road section Ro1 Based on field observations: Ra* Apparent Rayleigh number ----Based on numerical model: convective heat flux c c Heat flux, W/m² **Convection in frost protection layer Road section Ro6** Day of cooling period Based on field observations: Ra* ----Based on numerical model: convective heat flux Apparent Rayleigh number Convection in foam glass layer Day of cooling period

Conclusion:

□ Measurements of coarse-materials;

□ Modelling;

□ Frost protection layer – crushed rock materials;

□ Coarse-subbase;

Lightweight aggregates.

Thank you!

Statens vegvesen Norwegian Public Roads Administration

