Binder Aging and Durability Validation

Comparison laboratory versus field aging for an unmodified bitumen

Project background

- Determine binder properties related to aging-induced damage, in field sections (WEARING course).
- Set or find limiting levels for these parameters
- Comparing field to laboratory aging
- 2 sections for which we have the original binder:

Overview

Construction: 23-04-2009 Coring: 30-11-2020 **11 years**

Wax modified binder

50/70 PG 64-22

Original binders are still available

Points for which the binder has been recovered and tested

Original binders are still avialable

Nuclear density – wearing course – void %

WMA-Zeolite

Sweden

RV-17: Field sampling 28-10-2020 **12 years**

Layer		Binder	Binder %	Air voids	Construction
Wearing	30 mm ABT16	70/100	6.0%	1.5 - 3.5%	2008
Base	50 mm AG22	160/220	4.2%	3.0 - 6.0%	2007

Sweden

Nuclear density – wearing course – void %

5 cores used for binder recovery (between wheel path)

Slicing and binder recovery

Automated asphalt analyzer (EN 12697)

Trichloro ethylene was the solvent

BE section: 40 mm wearing course

SE section: 30 mm wearing

4 slices

5 slices (except for Z2, the location with 13.0% voids)

Binder tests

NYNAS

FTIR (attenuated total reflection)

C=O and S=O indices

DSR (plate-plate, plate diameter is indicated)

- Linear Visco Elastic range
 - 4 mm (10°C to -24°C) (strain 0.02%)
 - 8 mm (10°C to 50°C) (strain 0.05%)
 - 25 mm (50°C to 90°C) *(strain 1%)*
- Non-linear
 - 4 mm stress-strain sweep at 10°C 10Hz

GPC on selected samples

Rheological parameters (Rhea software beta v.4)

Brittle - ductile behavior

Molecular weight(s)

Binder tests: FTIR

Functional group	Wavenumber, cm ⁻¹	Index
CH_2 and CH_3 (A _{ref})	1513-1326	A _{ref}
Carbonyl group $(A_{C=0})$	1753-1635	$I_{C=O} = A_{C=O} / A_{ref}$
Sulfoxide group $(A_{S=O})$	1082-980	$I_{S=O} = A_{S=O} / A_{ref}$

5 November, 2023

Binder tests: FTIR

©2020 Nynas. All rights reserved.

Binder tests: Rheology

G*, Pa

Recovery Check

- <u>4 binders were recovered (no asphalt mixing)</u>
 - The unmodified binder (50/70)
 - The wax-modified binder

(before and after aging) (before and after aging)

Recovery Check

17

Comparison field and lab aging: FTIR

BE section C=O

Comparison field and lab aging: FTIR

BE section S=O

Rheology temperature sweep – 1Hz

Temperature sweep – 1Hz

Phase,

0

Frequency sweep at 10°C BE-Z1 (7.0% voids)

Frequency sweep at 10°C BE-Z1 (7.0% voids)

PG64-22 original
RTFOT+PAV

- -RTFOT+80hPAV
- -Z1 Slice 5
- →Z1 Slice 2
- ←Z1 Slice 1

Rheology – NON linear visco elastic range

Properties at large deformation - fracture

- Is there a relation to the LVE properties?
- Amplitude sweep from strain = 0,1 ... 30 % logarithmic at <u>10°C (10Hz)</u>

Brittle: failure before reaching a maximum in the stress strain curve

Ductile: failure after this maximum

Rheology – NON linear visco elastic range

Limiting low temperatures

BBR = flexural creep test

LST_{BBR} = S(t) = 300MPaLmT_{BBR} = slope = 0.3 **DSR = shear oscillation** transformed to a creep test

 $LST_{DSR} = G(t) = 142$ MPa(t= 60s loading time) $LmT_{DSR} = slope = 0.275$ (t= 60s loading time)

Limiting low temperatures: 4mm LST (142 MPa) and 4mm LmT (0.275)

Limiting low temperatures: 4mm LST (142 MPa) and 4mm LmT (0.275)

GPC (gel permeation chromatography): molecular weight

- Dilute solution,
- Inject the sample on a porous column
- Follow elution time versus detector response (refractive index)

GPC (gel permeation chromatography): molecular weight

GPC (gel permeation chromatography): molecular weight

In field aging, the smallest molecules have reacted (evaporated) ?

Bitumen Mw - Small molecular weights

Bitumen Mw - Associated fraction

Conclusions

- General conclusions:
 - (Large) variations in the degree of compaction, within one section
 - Dense mixes prevent aging in the asphalt layers, but the top slices still age considerably.
 - Density versus depth (wearing course) often showed a C-shape, which was also reflected in the aging.

- The comparison field versus standard lab aging:
 - Trends are similar
 - The comparison depends on the property that is investigated. For rheology, the comparison is dependent on the test conditions (frequency and temperature)
 - <u>At intermediate service temperatures</u>: field-aged binders become considerably more stiff and brittle as compared to lab-aged binders. Even after RTFOT+4x PAV binders were still ductile at 10°C-10Hz, while all top slices of field cores were brittle.
 - <u>At low service temperatures:</u> LmT and LST change more after field aging.
 - <u>Molecular level</u>: similar chemical reactions for field and lab aging, but there are indications that in lab aging larger molecules are involved compared to field aging.

Further Tests & Recommendations & Challenges

- Laboratory aging: (RTFOT + PAV)
 - Do we need an aging that exactly reflects field aging?

As long as **rankings are the same = No**

If lab aged samples are used as a surrogate for field aged binders = Yes

• How can we improve the comparison?

Use a lower aging temperature – longer time window?

Induce an acceleration by adding reactive radicals? Vienesse aging test (see literature)

If taking field cores; take as many as possible

Binder recovery:

- 1. Binder aging due to the recovery process: very little
- 2. Contaminations:

Silicon grease – very clear in FTIR

Rest solvent – clear when homogenizing the binders

Rest filler – see anomalies in the stiffness / microscopy / FTIR

3. Insufficient recovery: Yes, for the wax-modified binder

(Pavement performance – quantification of damage – cause of damage – data, data, data)

34

Acknowledgments:

Xiaohu Lu, Carl Robertus, Xavier Carbonneau, Hanyu Zhang, Yuqing Zhang, Gordon Airey BRRC, VTI and AIF, IWT

