Department of Civil, Environmental, and Geo- Engineering

UNIVERSITY OF MINNESOTA

MEPDG – Implementation, Adaptation, and Local Calibration

Lev Khazanovich, Ph.D. Professor University of Minnesota

- 1. Minnesota early implementation efforts
- 2. Current implementation status in the US
- 3. Arizona DOT case study
- 4. Minnesota update

MnDOT Early Implementation Efforts

University of Minnesota

- MnDOT-sponsored research project *Implementation of the MEPDG for Design of Concrete and Asphalt Pavements in Minnesota* (2005-2008)
 - Reviewed and identified/reported many bugs across multiple versions of the NCHRP MEPDG software
 - Extensive sensitivity study
 - Comparison with MnROAD performance
- Due to mixed results, MnDOT chose to postpone implementation

Sensitivity Analysis – Minnesota Conditions

University of Minnesota

- Design factorial involved 768 projects
 - Two levels of traffic
 - High, approximately 10-million ESALs (AADTT=2000)
 - Low, approximately 1-million ESALs (AADTT=200)
 - Two levels of climate
 - Northwest (Grand Forks, ND) and Southeast (Rochester, MN)
- Comparison of performance predictions

Total Rutting, V 0.900, 10 Million ESALs

University ^{of} Minnesota

Comparison with Measured Distresses

University ^{of} Minnesota

 MEPDG predictions were compared to the observed distresses for MnROAD cell 1 (5.9- in AC layer over a 33-in thick granular base resting on an A-6 subgrade)

Design Methodology Used in USA

	New Construction		Rehabilitation	
Answer Options	Asphalt	Concrete	Asphalt	Concrete
AASHTO 1972	7	2	5	1
AASHTO 1986	1	0	2	0
AASHTO 1993	35	23	31	19
AASHTO 1998 Supplement	4	11	4	8
AASHTOWare Pavement ME Design™	12	10	10	7
ACPA		5		4
Agency empirical procedure	7	1	9	3
Asphalt Institute	1		3	_
ME-based design table/catalog	1	3	0	3
Other ME procedure ¹	8	3	6	2
Other ²	5	7	7	8

From Pierce and McGovern (2014), NCHRP Synthesis 457

MEPDG Implementation

AASHTO ME Implementation Status

University of Minnesota

Oslo, December 4, 2014

- Climate data—Weather stations with preferably 20 years of continuous data
- Material and traffic input values—existing conditions, laboratory and field testing
- Pavement performance—pavement management system data and other data
- Calibration test sites—Number of pavement segments by pavement type, functional class, distress type, traffic volumes, and climatic regions

From Pierce and McGovern (2014), NCHRP Synthesis 457

Case Study: Arizona DOT Local Calibration

University of Minnesota

Calibration & Implementation of the AASHTO MEPDG in Arizona

- Sept 2014
- M.I. Darter
 L. Titus-Glover
 - H. Von Quintus
 - B. Bhattacharya
- J. Mallela of Applied Research Associates

Selected Flexible Pavements in Arizona

University of Minnesota

HMA	Base	Subgrade Type		
Thickness, in	Thickness, in	Coarse (A-1 through A-3)	Fine (A-4 through A-7)	
	< 6	161, A901, A902, A903, PMS_98-115		
4 to 8	≥ 6	113, 114,119, 120, 121,501, 502, 509, 559, 560, 1007_1, 1021_1,1034_1, 1034_5,1036_1, 1037_1, 6053_1, 6055_1, 6055_3, 6060_1, PMS_03-07, PMS_03-15, PMS_03-52, PMS_03-59, PMS_03-71,	AZ1, AZ2, AZ3, AZ4, 505, PMS_03-12	
	< 6	115, 116, 117, 118, 123, 124, 162, 260, 261, 1001, 1002_1, 1002_3	PMS_03-21_1, PMS_03-21_2, PMS_03-31_1, PMS_03-31_2,	
≥ 8	≥ 6	122, 503, 504, 506, 507, 508, 1003_1, 1003_3, 1006_1, 1006_2, 1007_4, 1015_1, 1015_2, 1016_1, 1016_3, 1017_1, 1017_3, 1021_5, 1022_1, 1022_3, 1024_1, 1024_7, 6054_1, B901, B902, B903, B959, B960, B961, B964 6060_5, PMS_03-28,	1018_1, 1018_4, PMS_03-60	

Oslo, December 4, 2014

As-Constructed HMA Mix Properties in Arizona

University of Minnesota

Final Model: Predicted vs Measured

University of Minnesota

Oslo, December 4, 2014

AZ Measured vs. "Global" Predicted Rutting

🔼 Civil, Environmental, and Geo- Engineering

UNIVERSITY

MINNESOTA

Improving Rutting Model Adequacy

- From Measured v. Predicted plots one can observe:
 - MEPDG global rutting models tend to over-predict total rutting
 - Measured rutting in Arizona usually levels off and does not increase much with traffic application
 - MEPDG predicted rutting trends show significant increase in rutting with increasing traffic
- For local calibration to be successful must:
 - Reduce impact of traffic load applications on rutting
 - Reduce magnitude of predicted total rutting

Rutting Model

Models of Interest

- AC rutting
- Unbound aggregate base rutting
- Subgrade rutting

 $TRUT = RUT_{HMA} + RUT_{BASE} + RUT_{SUBG}$

=

Where TRUT RUT_{HMA} RUT_{BASE} = RUT_{SUBG}

total rutting HMA rutting, in base rutting, in subgrade rutting, in

$$\Delta_{p(HMA)} = \varepsilon_{p(HMA)} h_{HMA} = \beta_{1r} k_z \varepsilon_{r(HMA)} 10^{k_{1r}} n^{k_2 \beta_{2r}} T^{k_3 \beta_{3r}}$$

Where

$$\Delta_{\rho(HMA)} =$$

$$\varepsilon_{\rho(HMA)} =$$

$$\varepsilon_{r(HMA)} =$$

$$h_{(HMA)} =$$

$$n =$$

$$T =$$

$$k_{2} =$$

$$k_{1r} k_{2r} k_{3r} =$$

$$\beta_{1r} \beta_{2r} \beta_{3r} =$$

AC rutting, in acc. plastic axial strain in HMA, in/in elastic strain in HMA layer, in/in HMA thickness, in number of axle load repetitions HMA mix temperature, °F depth confinement factor global field calibration constants local calibration constants

β

Unbound Base/Subgrade Rutting Model

University ^{of} Minnesota

$$\Delta_{p(soil)} = \beta_{S1} k_{s1} \varepsilon_{v} h_{soil} \left(\frac{\varepsilon_{o}}{\varepsilon_{r}}\right) e^{-\left(\frac{\rho}{n}\right)^{\beta}}$$

Where

- $\Delta_{p(Soil)}$ = plastic deformation, in
 - n' = number of axle load applications
 - ε_o = intercept (from lab permanent deformation tests), in/in
 - ε_r = resilient strain (from lab testing), in/in
 - ε_v = average vertical resilient in base/subgrade, in/in
 - h_{Soil} = base/subgrade thickness, in
 - k_{s1} = global calibration coefficient
 - β_{S1} = local calibration coefficient for **base or subgrade**

 $\Delta_{p(HMA)} = \varepsilon_{p(HMA)} h_{HMA} = \beta_{1r} k_z \varepsilon_{r(HMA)} 10^{k_{1r}} n^{k_2} \beta_{2r} T^{k_3} \beta_{3r}$

Model Coefficients	Global Calibration Coef.	ADOT Local Calibration Coef.
K1	-3.35412	-3.35412
K2	1.5606	1.5606
K3	0.4791	0.4791
BR1	1	0.69
BR2	1	1
BR3	1	1

Base (Granular Subgrade) Rutting Model

$$\Delta_{p(soil)} = \beta_{s1} k_{s1} \varepsilon_{v} h_{soil} \left(\frac{\varepsilon_{o}}{\varepsilon_{r}}\right) e^{-\left(\frac{\rho}{n}\right)^{\beta}}$$

Model Coefficients	Global Calibration Coef.	ADOT Local Calibration Coef.
BS1	1	0.14

TRUT = $0.69^* k_z \varepsilon_{r(HMA)} 10^{k_{1r}} n^{k_{2r}\beta_{2r}} T^{k_{3r}\beta_{3r}}$ + $0.14^* \text{RUT}_{\text{BASE}}$ + $0.37^* \text{RUT}_{\text{SUBG}}$

Oslo, December 4, 2014

Measured vs Predicted Rutting: Case Study

University ^{of} Minnesota

SHRPID=4_0113

Oslo, December 4, 2014

Lessons Learned from MEPDG Implementation

- Establish realistic timelines for the calibration and validation process.
- Allow sufficient time for obtaining materials and traffic data.
- Obtain the data related to the existing pavements
- Develop agency-based design inputs
- Provide training to agency staff in ME design fundamentals, MEPDG procedures, and the AASHTOWare Pavement ME Design software. From Pierce and McGovern (2014), NCHRP Synthesis 457

- Asphalt pavements: use MnPAVE, no plans to implement MEPDG
 - Introduced in 2000
 - Major calibration in 2006
 - Latest release in spring of 2014

- Concrete pavements: MEPDG-based simplified procedure MnPAVE Rigid
 - Introduced in spring of 2014

Minnesota ME Design - MnPAVE

University of Minnesota

Oslo, December 4, 2014

MnPAVE Climate Input

Oslo, December 4, 2014

MnPAVE Structure Characterization

University of Minnesota

Oslo, December 4, 2014

MnPAVE Outputs

MnPAVE - MnPAVE1	
<u>File Edit View Window He</u>	lp
🗅 🚅 🔚 🕺 🖻 💼 👼 🕸 🕯	2
→ Output	Reliability Basic Batch Mode
ESAL 18,000,000 Preliminary Design Thickness Goal Seek Round Layer 1 • 2 • 3 • Years Fatigue 42	
Rutting 20 Adjust Materials H (in.) HMA: PG64-34 9.7 + AggBase: Cl.5 12 + Subbase: SelGr 15 + ExeSoil: Cl. 12 +	Percent of Total Damage Fall Winter Spring Summer 18.5 2.7 1.8 21.4 55.7 MnPAVE Fatigue
EngSoil: CL 12 UndSoil: CL Recalculate Units C English Go Back to Control Panel	19.8 0.9 0.3 26.5 52.5 MnPAVE Rutting Export as Text File or Excel Spreadsheet
For Help, press F1	

Oslo, December 4, 2014

Minnesota ME Design - MnPAVE

- MnPave Flexible design process is similar to MEPDG, but has differences:
 - Minnesota specific climate
 - -Limited to 5 layers
 - Analysis is bottom-up fatigue, subgrade rutting, and base failure
 - Optimization options
- Royalty-free software

- MEPDG-based simplified procedure for concrete pavements
 - Minnesota-specific default inputs
 - Limited number of input paramters
 - Based on 11,000 MEPDG v1.1 runs
 - Royalty-free software

MnPAVE Rigid

MnPCC-ME Main Design Valu	es User Guide About Defaults	
Project name *.txt file path C:\Us Project notes	Load from *.txt file sers\dt\Research\destable\Task_5_Software\BUILD_2FINAL Edit	Inputs
Design life, years: Initial traffic, HCAD Axle load spectra: Widened outer lan Shoulder type:	Climate (by district):	
Thickness:	Output Exit Run	

Oslo, December 4, 2014

Conclusions

- M-E design procedures offer significant benefits
- M-E design procedures are more complex than empirical design
- Implementation of M-E procedures require significant efforts

