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History of Empirical  Design Guide 
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• Empirical design methodology based on AASHO 
Road Test in the late 1950’s 

• Several versions: 

– 1961 (Interim Guide), 1972, 1986 

– 1986 version included refined material 
characterization 

– 1993 revised version 

• More on rehabilitation 

• More consistency between flexible, rigid designs 

• Current version for flexible design procedures 



AASHO Road Test (late 1950’s) 
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(AASHO, 1961) 



Low Traffic Level 
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Evolution of Pavement Design in USA 
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http://www.jantoo.com/cartoon/11800597 



History of AASHTO ME Design 
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• 2004:  NCHRP Project 1‐37A: Development of  the 

Guide for Design of  New and Rehabilitated 

Pavement Structures 

– 2002 Design Guide 

– MEPDG 

• 2007: NCHRP Project 1-40B – Manual of  Practice 

• 2007: NCHRP Project 1-40D – Local Calibration 

Guide 

• 2008: Balloted by AASHTO 

– AASHTO ME design procedure 

 



MEPDG Software 
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Software 

– NCHRP  

• MEPDG versions 0.7, 0.8, 0.9, 1.0, 1.1 

– AASHTOWare  

• DARWin-ME (2011-2013) 

• Pavement ME (since 2013) 



Licensing 
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• MEDPG v 1.1  

– Public domain, but installation file is not distributed 

– Requires connection to the TRB server 

– Can be disconnected at  any time 

• Pavement ME 

– Individual license: $5,000/year 

– Site license for up to 9 users: US$20,000/year 

– Site license for up to 14 users: US$30,000/year 

– Site license for unlimited users: US$40,000/year 



Design Inputs – 4 Main Categories 
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• Traffic 

– Volume 

– Axle load distribution 

– Axle configuration 

• Climate 

– Latitude, longitude, elevation, etc. 

• Structure 

– Layers, thicknesses, and material properties 

• Performance thresholds and reliability 

level 



Input Levels 
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The Design Guide includes three levels 
of specification for inputs. 

Input 
Level 

Determination of Input 
Values 

Knowledge of Input 
Parameter 

1 Project/Segment Specific 
Measurements—Lab, WIM, 
FWD 

Good 

2 Correlations/Regression 
Equations, Regional Values— 
CBR, R-Value, Dynamic Cone 
Penetrometer 

Fair 

3 Soil Classifications, Typical 
values 

Fair - Poor 



Traffic Loading Inputs 
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• Vehicle volume, growth & classification 

• Single, tandem, tridem, quad axle load 
distributions 

• Monthly vehicle distribution 

• Lateral lane distribution and traffic wander 

• Tire pressure 

• Tractor wheelbase 

• Truck speed 

 



Traffic Loading Inputs Examples 
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Climate Inputs 
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• Hourly climatic data: Weather Stations 

– Temperature 

– Precipitation 

– Wind speed 

– Cloud cover 

– Relative ambient humidity  

• Water table level 



Simplified Climate Inputs 
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Structure Inputs - Layers 
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Structure Inputs: Materials Properties 
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Empirical Relation for |E*| 
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Simplified Asphalt Materials Inputs (Level 3) 
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Simplified Unbound Base/ Soil Inputs 
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Estimate resilient modulus, Mr, from: 

• CBR, 

• R-Value, or 

• Dynamic Cone Penetration 

• Soil Classification 



Performance Criteria 
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• Threshold Levels   

• Reliability Levels  

 



AASHTOWare Pavement ME Design Software 
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Design Process 
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Annual Modulus Variability 
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Structural Analysis 
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Structural Analysis (cont.) 
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• Critical structural response  

• Cracking: t at surface + bottom of all bound 
layers 

• Rutting: c at mid-thickness of all layers 

 + top of subgrade 

t 
c 

t 
c 



Design Process 
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Example Fatigue Cracking Prediction 
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Rutting Model Prediction 
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Model Calibration 
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AASHO Road 

Test Site 



Calibrated HMA Fatigue Model 
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Alligator Cracking National Calibration - June 2006
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Calibrated Rutting Model 
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Rut Calibration - June 2006-2- AC (0.633, 0.9, 1.2), GB (2.03), 

SG (1.35) - Optimizing On AC and GB
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Benefits of MEPDG 
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• Accounts for many factors that change over 

time (traffic, climate, materials) 
 

• Allows the prediction of key distress types as 

well as roughness over time 
 

• Improved traffic characterization 
 

• Improved structural modeling capabilities 
 

• Improved materials characterization 



Benefits of MEPDG – Indiana DOT 
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From Nantang (2010), http://onlinepubs.trb.org/onlinepubs/trnews/trnews271rpo.pdf 

Asphalt thickness is reduced by 40 to 110 mm! 



Conclusions  
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• M-E design procedures are “Comprehensive” 
design procedures, or Not Just Thickness!  

Faultin

g 
• M-E models directly consider true effects and 

interactions of inputs on structural performance 

• Design optimization possible where all distress 
types are minimized! 

• M-E design procedures are more complex than 
empirical design 

• Use of software and user training is required 


