Department of Civil, Environmental, and Geo- Engineering

University of Minnesota

Mechanistic-Empirical Design in USA

Lev Khazanovich, Ph.D. Professor University of Minnesota

- 1. Why mechanistic-empirical (ME) design?
- 2. Overview of AASHTOWare ME
 - 1. Required input parameters (material properties, climate, traffic)
 - 2. Performance models
 - 3. Benefits

History of Empirical Design Guide

- University of Minnesota
- Empirical design methodology based on AASHO Road Test in the late 1950's
- Several versions:
 - 1961 (Interim Guide), 1972, 1986
 - 1986 version included refined material characterization
 - 1993 revised version
 - More on rehabilitation
 - More consistency between flexible, rigid designs
 - Current version for flexible design procedures

AASHO Road Test (late 1950's)

University of Minnesota

Low Traffic Level

PAVEMENT THICKNESS

Oslo, December 4, 2014

Evolution of Pavement Design in USA

University of Minnesota

Oslo, December 4, 2014

History of AASHTO ME Design

- 2004: NCHRP Project 1-37A: Development of the Guide for Design of New and Rehabilitated Pavement Structures
 - 2002 Design Guide
 - MEPDG
- 2007: NCHRP Project 1-40B Manual of Practice
- 2007: NCHRP Project 1-40D Local Calibration Guide
- 2008: Balloted by AASHTO
 - AASHTO ME design procedure

MEPDG Software

Software

– NCHRP

- MEPDG versions 0.7, 0.8, 0.9, 1.0, 1.1
- AASHTOWare
 - DARWin-ME (2011-2013)
 - Pavement ME (since 2013)

AASHTOWare

ME Design

AASHO

avemen

Licensing

- MEDPG v 1.1
 - Public domain, but installation file is not distributed
 - Requires connection to the TRB server
 - Can be disconnected at any time
- Pavement ME
 - Individual license: \$5,000/year
 - Site license for up to 9 users: US\$20,000/year
 - Site license for up to 14 users: US\$30,000/year
 - Site license for unlimited users: US\$40,000/year

Design Inputs – 4 Main Categories

University of Minnesota

- Traffic
 - Volume
 - Axle load distribution
 - Axle configuration
- Climate
 - Latitude, longitude, elevation, etc.
- Structure

Click here to edit Layer 1 Flexible : Default asphal Click here to edit Layer 2 Non-stabilized Base : A-Office here to edit Layer 3 Subgrade : A-6

- Layers, thicknesses, and material properties
- Performance thresholds and reliability level

The Design Guide includes three levels of specification for inputs.

Input Level	Determination of Input Values	Knowledge of Input Parameter
1	Project/Segment Specific Measurements—Lab, WIM, FWD	Good
2	Correlations/Regression Equations, Regional Values— CBR, R-Value, Dynamic Cone Penetrometer	Fair
3	Soil Classifications, Typical values	Fair - Poor

Oslo, December 4, 2014

- Vehicle volume, growth & classification
- Single, tandem, tridem, quad axle load distributions
- Monthly vehicle distribution
- Lateral lane distribution and traffic wander
- Tire pressure
- Tractor wheelbase
- Truck speed

Traffic Loading Inputs Examples

University of Minnesota

Axle Configuration

Traffic Wander		
Mean wheel location (in.)	18	
Traffic wander standard deviation (in.)	10	
Design lane width (ft)	12	

Axle Configuration	Axle Configuration		
Average axle width (ft)	8.5		
Dual tire spacing (in.)	12		
Tire pressure (psi)	120		

Average Axle Spacing			
Tandem axle spacing (in.)	51.6		
Tridem axle spacing (in.)	49.2		
Quad axle spacing (in.)	49.2		

Wheelbase does not apply	

Number of Axles per Truck

Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.62	0.39	0	0
Class 5	2	0	0	0
Class 6	1.02	0.99	0	0
Class 7	1	0.26	0.83	0
Class 8	2.38	0.67	0	0
Class 9	1.13	1.93	0	0
Class 10	1.19	1.09	0.89	0
Class 11	4.29	0.26	0.06	0
Class 12	3.52	1.14	0.06	0
Class 13	2.15	2.13	0.35	0

Climate Inputs

- Hourly climatic data: Weather Stations
 - Temperature
 - Precipitation
 - Wind speed
 - Cloud cover
 - Relative ambient humidity
- Water table level

Simplified Climate Inputs

Oslo, Decemb

(Use single weather station O Create a virtual weather station 									
	Distance (miles)	City	State	Latitude (decimals degrees)	Longitude (decimal degrees)	Elevation (ft)	Description	firstMonth	lastMonth	
V	0	MINNEAPOLIS	MN	45.063	-93.351	866	CRYSTAL AIRPORT	10/1997	2/2006	
V	13.8	MINNEAPOLIS	MN	44.883	-93.229	815	MINPLIS-ST PAUL INTL AR	7/1996	2/2006	
V	17	MINNEAPOLIS	MN	44.832	-93.47	904	FLYING CLOUD AIRPORT	11/1997	2/2006	
V	17.4	ST. PAUL	MN	44.93	-93.048	702	ST. PAUL DWTWN HOLMA	7/1996	2/2006	
V	47.6	ST. CLOUD	MN	45.545	-94.052	1018	ST. CLOUD REGIONAL AIR	7/1996	2/2006	
V	90.5	ROCHESTER	MN	43.904	-92.492	1304	ROCHESTER INTL AIRPORT	7/1996	2/2006	-

Project1:Project Project1:Climate		
	Summary Hourly climate data	
Climate Station		
Longitude (decimal degrees)93.351	4 Climato Summany	
Latitude (decimals degrees)		40.0
Elevation (ft) 366	Mean annual air temperature (deg F)	40.3
Depth of water table (ft) Annual(34)	Mean annual precipitation (in.)	27.7
Climate station MINNEAPOLIS.MN (94960	Number of wet days	181.4
4 Identifiers	Freezing index (deg F - days)	2379.1
Display name/identifier	Average annual number of freeze/thaw cycles	67
Description of object	Monthly Temperatures	
Approver	Average temperature in January (deg F)	16.1
Date approved 12/2/2014 4:35 DM	Average temperature in February (deg F)	22.5
	Average temperature in March (deg F)	31.7
Date exected 12/2/2014 4:25 DM	Average temperature in April (deg F)	47.3
Date created 12/2/2014 4.35 PM	Average temperature in May (deg F)	57.3
County	Average temperature in June (deg F)	66.7
State	Average temperature in July (deg E)	73.3
District	Average temperature in August (deg F)	70.4
Direction of travel	Average temperature in September (deg F)	62.4
From station (miles)	Average temperature in October (deg E)	10 2.4
To station (miles)	Average temperature in October (deg F)	40.3
Highway	Average temperature in November (deg F)	36.2
Revision Number 0	Average temperature in December (deg F)	22.3

Structure Inputs: Materials Properties

Simplified Asphalt Materials Inputs (Level 3)

University ^{of} Minnesota

Layer 1 Asphalt Concrete:Default asphalt concrete

1 🚺 🖂	
Air voids (%)	✓ 6
Approver	
Asphalt binder	SuperPave:64-34
Author	
County	
Creep compliance (1/psi)	Superpave Performance Grade
Date approved	Negosity Grade
Date created	O Viscosity Grade
Description of object	Penetration Grade
Direction of travel	Binder type: 64-34
Display name/identifier	
District	A: 9.461 VTS: -3.134
Dynamic modulus	
Effective binder content (%)	
From station (miles)	
Heat capacity (BTU/lb-deg F)	✓ 0.23

Air voids (%)

As-constructed air voids of the asphalt concrete layer. Minimum:2...

Simplified Unbound Base/ Soil Inputs

UNIVERSITY Minnesota

- Estimate resilie
- CBR,
- R-Value, or
- Dynamic Cor
- Soil Classifie Layer 2 No

₿ (A)

liant	Sieve Size	Percent Passing	Liqui
	0.001mm		Diacti
	0.002mm		Fidst
	0.020mm		📄 Is
	#200	8.7	🔳 Ma
	#100		Sa
	#80	12.9	
	#60		Sp Sp
ne	#50		🔲 O1
	#40	20	l Us
C!	#30		
rica	#20		af
er 2 Non-stabilize	#16		bf
A. e	#10	33.8	cf
Author	#8		hr
Coefficient of lat	#4	44.7	
County Date approved	3/8-in.	57.2	
Date created	1/2-in.	63.1	
Description of o	3/4-in.	72.7	
Display name/id	1-in.	78.8	
District From station (m)	1 1/2-in.	85.8	
Gradation & othe	2-in.	91.6	
Highway Item Locked?	2 1/2-in.		
Layer thickness	3-in.		
Poisson's ratio Resilient moduli	3 1/2-in.	97.6	

Oslo, December 4, 2014

Performance Criteria

- Threshold Levels
- Reliability Levels

Performance Criteria	Limit	Reliability
Initial IRI (in./mile)	<mark>63</mark>	
Terminal IRI (in./mile)	172	90
AC top-down fatigue cracking (ft/mile)	2000	90
AC bottom-up fatigue cracking (percent)	25	90
AC thermal cracking (ft/mile)	1000	90
Permanent deformation - total pavement (in.)	0.75	90
Permanent deformation - AC only (in.)	0.25	90

AASHTOWare Pavement ME Design Software

AASHTOWare Pavement ME Design Version 2.0 Build 2.0.19 (Date: 01/23/2014)											
Menu	Progress	μ×									
Recent Files •	- 💾 🎫 Ă 🖓 🥙 👍 🍅 і 🖓 🦳 🕐			Stop All Analysis							
New Open SaveA	s Save Save Al Close Exit Run Batch Import Export Undo Redo Help			Project 1	%						
Explorer 4 ×	Project1:Project / Project1:Traffic / Project1:Single / Project1:Tandem / Project1:Tridem / Project1:Quad / Project1:Climate / Ontions /	Project1:Ontimizat	ion = X	Running Integrated Climatic	100						
🖃 🔤 Projects	General Information	lina	Deliekilte	Extending climate solution	100						
	Design type: New Pavement		Neliability	Preparing Thermal Cracking	100						
	Pavement type: Rexible Pavement	03	00	Running Thermal Cracking	100						
	Design life (vears): 20 V	1/2	90	Asphalt Damage Calculations	0						
Tridem Axle Distribution	AL top down fatigue cracking (t/mile)	2000	90	Asphalt Rutting and Fatigue	0						
Quad Axle Distribution	AC bottom-up fatigue cracking (percent)	25	90	Asphalt IRI	0						
AC Layer Properties	AC themal cracking (t/mile)	1000	90								
	Permanent deformation - total pavement (in.)	0.75	90								
Layer 1 Flexible : Defau	Special traffic loading for flexible pavements Permanent deformation - AC only (in.)	0.25	90								
Layer 3 Subgrade : A-6	Add Laver 😤 Remove Laver										
Project Specific Calibration											
	Layer 1 Asphalt Concrete:Default asphalt concrete										
	Air voids (%)										
Bonded Rigid	Approver										
	Click here to edit Laver 1 Flexible : Default asphal Asphalt binder SuperPave: 54-34										
Optimization	County		=								
PDF Output Report	Click here to edit Layer 2 Non-stabilized Base : A- Creep compliance (1/psi)										
Multiple Project Summary	Date approved 10/30/2010										
Batch Run	Deservation of object										
i≘i⊇ Tools	Direction of travel										
Options Automatically Deactivate Curren	Display namelidentifier Default asphalt concrete										
Manually Deactivate Current Li	District Dynamic modulus										
	Click here to edit Layer 3 Subgrade : A-6 Effective binder content (%) II.6										
	From station (miles)										
	Heat capacity (BTU/Ib-deg F) V.23		T								
	Air voids (%) As-constructed air voids of the asphalt concrete laver										
	Minimum:2										
	4 X										
	Productive Manager										
	Uispiay Name Project I Project 2 Companson Message										
۰ III ا	🗐 Output 📸 Error List 😑 Compare										

Oslo, December 4, 2014

Design Process

Oslo, December 4, 2014

Annual Modulus Variability

Structural Analysis

Oslo, December 4, 2014

Structural Analysis (cont.)

- Critical structural response
- Cracking: ε_t at surface + bottom of all bound layers
- Rutting: ϵ_c at mid-thickness of all layers

Design Process

Oslo, December 4, 2014

Example Fatigue Cracking Prediction

University of Minnesota

Oslo, December 4, 2014

🔼 Civil, Environmental, and Geo- Engineering

Rutting Model Prediction

Model Calibration

Oslo, December 4, 2014

Calibrated HMA Fatigue Model

Calibrated Rutting Model

Benefits of MEPDG

- Accounts for many factors that change over time (traffic, climate, materials)
- Allows the prediction of key distress types as well as roughness over time
- Improved traffic characterization
- Improved structural modeling capabilities
- Improved materials characterization

Benefits of MEPDG – Indiana DOT

	I attila a	AASHTO 1993	MEPDG	Estimated	Actual
Road	Date	Thickness	Thickness	Savings	Savings
SR 14	3/8/2008	15" HMA	13.5" HMA	\$333,000	\$155,440
US 231	11/8/2008	15.5" HMA	13" HMA	\$557,000	\$673,796
SR 62	11/8/2008	16" HMA	13" HMA	\$403,000	\$420,548
SR 32	2/11/2009	15.5" HMA	13.5" HMA	\$283,000	
SR 66	2/11/2009	13.5" HMA	13" HMA	\$90,000	
US 31	2/11/2009	15.5" HMA	14" HMA	\$287,000	
SR 641	3/11/2009	15.5" HMA	13" HMA	\$292,000	
SR 3	3/11/2009	14" HMA	13.5" HMA	\$103,000	
SR 23	4/8/2009	18" HMA	13.5" HMA	\$430,000	

Asphalt thickness is reduced by 40 to 110 mm!

From Nantang (2010), http://onlinepubs.trb.org/onlinepubs/trnews/trnews271rpo.pdf

Conclusions

- M-E design procedures are "Comprehensive" design procedures, or Not Just Thickness!
- M-E models directly consider true effects and interactions of inputs on structural performance
- Design optimization possible where all distress types are minimized!
- M-E design procedures are more complex than empirical design
- Use of software and user training is required

