

Pavement response due to different tyre configuration

Sigurdur Erlingsson sigurdur.erlingsson@vti.se VTI – The Swedish National Road and Transport Research Institute Linköping Sweden

FINDING A BETTER WAY

Background

Type of tyres and their configurations has changed throughout the years as new tyres have been launched. Different tyres and their configuration affects the degradation of the road network. In this project the VTI:s HVS machine is used to get direct measurements of pavement response to quantify their impact.

Objectives

To get direct measurements of the response of typical pavement structure from different tyres and their configuration.

Results

Direct measurements of pavement response that can be used with transfer functions to predict their degradation rate.

Background, Objectives & Results - cont.

The HVS Nordic is a mobile APT test facility.

Tyre configuration

vti

Lateral wander

Wearing course, ABT 16, 70/100 Road base, AG22, 160/220

Subbase
Subgrade, sand

Subgrade, silty sand

Dimensions	Configuration	Brand
275/80 R 22,5	Twin / Dual	YOKOHAMA Supersteel RY103
295/80 R 22,5	Twin / Dual	Marshal KRS 15
315/80 R 22,5	Single	Michelin X Multiway 3D
385/65 R 22,5	Single	Michelin X Multi
425/65 R 22,5	Single	Goodyear G165
455/40 R 22,5	Single	Goodyear Marathon LHT+

Tensile strain, longitudinal Tensile strain, transversal

- **Vertical strain**
- **Vertical stress**

Tyre configuration

The response scheme

Temp.: $T = 10^{\circ}$ C Speed: v = 12 km/h

Loading: *W* = 40; **50**; 60 & 80 kN Tyre pressure: *p* = 700; **800**; 900 & 950 kPa Loading configuration: Single & Dual

Typical response

Response

Tyre configuration $L_A = 100 \text{ kN } \& p = 800 \text{ kPa}$

Tensile strain

Response Vertical strain

Tyre configuration $L_A = 100 \text{ kN } \& p = 800 \text{ kPa}$

Response Vertical stress

Tyre configuration $L_A = 100 \text{ kN } \& p = 800 \text{ kPa}$

Moist vs. wet

Transverse strain (bottom of asphalt concrete layer)

Design criteria according to PMS Objekt: Tensile strain Permanent deformation $N_f = k_1 \cdot \varepsilon_t^{-4}$ $N_f = k_2 \cdot \varepsilon_v^{-4}$

For the standard axle loading case:

 $L_A = 100 \text{ kPa } \& p = 800 \text{ kPa}$:

E.

↓ E_v

	Tensile strain	Vertical strain
	<i>ε_t</i> [με]	<i>e</i> , [µe]
Dual wheel (average)	285	663
Single wheel (average)	422	785
S/D	1.48	1.18
Reduction in live (D/S) ⁴	4.79	1.94

Pavement response from different tyres has been measured in a full scale testing from four single tyres and two dual tyres configurations.

- » Great difference between dual tyre configuration vs. single tyres is observed in the upper part of the structure. This is true for tensile strain ε_t , vertical strain ε_v & vertical stress σ_v .
- » The difference between single and dual tyres decreases with depth.
- » As the tyre width increases the response generally decreases.
- » The response increase (ε_t , ε_v & σ_v) as the water table is raised.

Note: This is only based on one thin pavement structure that has been tested.

Thanks & Questions?