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• MnDOT-sponsored research project 
Implementation of the MEPDG for Design of 
Concrete and Asphalt Pavements in Minnesota 
(2005-2008) 
– Reviewed and identified/reported many bugs across 

multiple versions of the NCHRP MEPDG software 
– Extensive sensitivity study 
– Comparison with MnROAD performance 

• Due to mixed results, MnDOT chose to postpone 
implementation 

MnDOT Early Implementation  Efforts 
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• Design factorial involved 768 projects 
– Two levels of traffic 

• High, approximately 10-million ESALs 
(AADTT=2000) 

• Low, approximately 1-million ESALs (AADTT=200) 
– Two levels of climate 

• Northwest (Grand Forks, ND) and Southeast 
(Rochester, MN) 

• Comparison of performance predictions 

Sensitivity Analysis – Minnesota Conditions 
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Total Rutting, V 0.900, 10 Million ESALs 
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Comparison with Measured Distresses 
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• MEPDG predictions were compared to the observed 
distresses for MnROAD cell 1 (5.9- in AC layer over a 33-in 
thick granular base resting on an A-6 subgrade)   
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Design Methodology Used in USA 
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From Pierce and McGovern (2014), NCHRP Synthesis 457 
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MEPDG Implementation 



AASHTO ME Implementation Status 
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From Pierce and McGovern (2014), NCHRP Synthesis 457 



Data Needs and Required Information 
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• Climate data—Weather stations with preferably 
20 years of continuous data 

• Material and traffic input values—existing 
conditions, laboratory and field testing 

• Pavement performance—pavement 
management system data and other data 

• Calibration test sites—Number of pavement 
segments by pavement type, functional class, 
distress type, traffic volumes, and climatic 
regions 

From Pierce and McGovern (2014), 
NCHRP Synthesis 457 



Case Study: Arizona DOT Local Calibration 
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Selected Flexible Pavements in Arizona 
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HMA 
Thickness, 

in 

Base 
Thickness, 

in 

Subgrade Type 

Coarse (A-1 through A-3) Fine (A-4 through A-7)  

4 to 8 

< 6 161,  A901, A902, A903,  
PMS_98-115 

> 6 

113, 114,119, 120, 121,501, 502, 509, 
559, 560, 1007_1, 1021_1,1034_1, 
1034_5,1036_1, 1037_1, 6053_1, 

6055_1,  6055_3,  6060_1, 
PMS_03-07, PMS_03-15, PMS_03-52, 

PMS_03-59, PMS_03-71, 

AZ1,  AZ2,  AZ3, AZ4, 
505,  PMS_03-12 

> 8 

< 6 115, 116, 117, 118, 123, 124, 
162, 260, 261, 1001, 1002_1, 1002_3 

PMS_03-21_1,  
PMS_03-21_2, 
PMS_03-31_1,  
PMS_03-31_2, 

> 6 

122, 503, 504, 506, 507, 508, 
1003_1,  1003_3, 1006_1, 

1006_2, 1007_4, 1015_1, 1015_2, 
1016_1, 1016_3, 1017_1, 1017_3, 
1021_5, 1022_1, 1022_3, 1024_1,  

1024_7, 6054_1,  B901, B902, B903, 
B959, B960, B961, B964 

6060_5,  PMS_03-28, 

1018_1, 1018_4,  
PMS_03-60 



As-Constructed HMA Mix Properties in Arizona 
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As constructed air void content 



Final Model: Predicted vs Measured 
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Local Verification, 
Calibration, & Validation 

of Total Rutting Model for 
Arizona Conditions 



AZ Measured vs. “Global” Predicted Rutting 
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Goodness of fit was poor (R2 = 4.6 
percent. Total rutting prediction was 

biased (p-value < 0.05). Over prediction.  
There is need for recalibration 



Improving Rutting Model Adequacy 
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• From Measured v. Predicted plots one can 
observe: 
– MEPDG global rutting models tend to over-predict 

total rutting 
– Measured rutting in Arizona usually levels off and does 

not increase much with traffic application 
– MEPDG predicted rutting trends show significant 

increase in rutting with increasing traffic 
• For local calibration to be successful must: 

– Reduce impact of traffic load applications on rutting 
– Reduce magnitude of predicted total rutting  



Rutting Model 
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• Models of Interest  
– AC rutting 
– Unbound aggregate base rutting 
– Subgrade rutting 

 

Where 
 TRUT = total rutting 
 RUTHMA  =  HMA rutting, in 
 RUTBASE  = base rutting, in 
 RUTSUBG = subgrade rutting, in 

TRUT = RUTHMA + RUTBASE + RUTSUBG 



AC Rutting Submodel  

Oslo, December 4, 2014 

rrrrr kkk
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ββεβε ==∆

Where 
 ∆p(HMA) =  AC rutting, in 
 εp(HMA) =  acc. plastic axial strain in HMA, in/in 
 εr(HMA) =  elastic strain in HMA layer, in/in 
 h(HMA) =  HMA thickness, in 
     n =  number of axle load repetitions 
    T =  HMA mix temperature, °F 
   kz =  depth confinement factor 
    k1r,k2r, k3r  =  global field calibration constants 
   β1r, β2r, β3r  =  local calibration constants 



Unbound Base/Subgrade Rutting Model 
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Where 
         ∆p(Soil) = plastic deformation, in 
    n = number of axle load applications 
   εo = intercept (from lab permanent deformation  
     tests), in/in 
   εr = resilient strain (from lab testing), in/in 
             εv = average vertical resilient in base/subgrade, in/in 
 hSoil = base/subgrade thickness, in 
            ks1 = global calibration coefficient 
            βS1 = local calibration coefficient for base or subgrade 
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AC Rutting Model 
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Model Coefficients Global Calibration 
Coef. 

ADOT Local 
Calibration Coef. 

K1 -3.35412 -3.35412 
K2 1.5606 1.5606 
K3 0.4791 0.4791 

BR1 1 0.69 
BR2 1 1 
BR3 1 1 

rrrrr kkk
HMArzrHMAHMApHMAp Tnkh 3322110)(1)()(

ββεβε ==∆
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Model Coefficients Global Calibration 
Coef. 

ADOT Local 
Calibration Coef. 

BS1 1 0.14 

Base (Granular Subgrade) Rutting Model 
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Total Rutting Model  

TRUT  =0.69*   
                     
     + 0.14*RUTBASE + 0.37*RUTSUBG 

rrrrr kkk
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Predicted vs Measured Rutting 
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N = 479 
R2 = 17 % 
SEE = 0.11-in 



Measured vs Predicted Rutting: Case Study 
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Lessons Learned from MEPDG Implementation 
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• Establish realistic timelines for the calibration 
and validation process. 

• Allow sufficient time for obtaining materials and 
traffic data. 

• Obtain the data related to the existing 
pavements 

• Develop agency-based design inputs 
• Provide training to agency staff in ME design 

fundamentals, MEPDG procedures, and the 
AASHTOWare Pavement ME Design software. 

From Pierce and McGovern (2014), 
NCHRP Synthesis 457 



MnDOT Status 
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• Asphalt pavements: use MnPAVE, no plans to 
implement MEPDG 
– Introduced in 2000 
– Major calibration in 2006 
– Latest release in spring of 2014 

 
• Concrete pavements: MEPDG-based simplified 

procedure MnPAVE Rigid 
– Introduced in spring of 2014 



Minnesota ME Design - MnPAVE 

Oslo, December 4, 2014 



MnPAVE Climate Input 
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MnPAVE Structure Characterization 
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MnPAVE Outputs 
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Minnesota ME Design - MnPAVE 
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• MnPave Flexible design process is similar to 
MEPDG, but has differences: 
– Minnesota specific climate 
– Limited to 5 layers 
– Analysis is bottom-up fatigue, subgrade rutting, 

and base failure 
– Optimization options 

• Royalty-free software 
 

 



MnPAVE Rigid 
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MEPDG-based simplified procedure for concrete 
pavements 

– Minnesota-specific default inputs 
– Limited number of input paramters 
– Based on 11,000 MEPDG v1.1 runs 
– Royalty-free software 



MnPAVE Rigid 
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Inputs 

Output 



Conclusions  
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• M-E design procedures offer significant benefits 
Faultin

g 
• M-E design procedures are more complex than 

empirical design 
 
• Implementation of M-E procedures require 

significant efforts 
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